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CALCULATION OF THE LATERAL-DYNAMIC STABILITY OF AIRCRAFT®
By A, Raikh

The obJect of this report is to present a method of computing -
the lateral-dynamic stabllity of an airplane,

Graphs and Pormulas are given with the aid of which all the = ~-~". .=
aerodynamic coefficients required for computing the lateral dynamic .
stability can be determined. A number of numerical examples are

given for obtaining the stability derivatives and solving the
characteristic-stabllity eguation., Approximate formulas are derived

with the ald of which rapid preliminsry computations may be made and

the stability coefficients corrected for certain modifications of

the airplane, A derivation of the lateral-dynamic-stadbility equa-

tions 1s included,

INTRODUCTION I

In the present ,stage of development of airplans design, con-
stantly increasing requirements are Imposed on the alrplane as
regards stability and maneuverabllity. If the area of the vertical
tall surface and the transverse dihedral of the wing are unfavoradbly
chosen, the airplane will be subjected to large lateral motions at
the least gust of wind and the pillot will be under the constant -
necessity of applying the controls., Some alrplanes because of their
flying qualities are generally approved by pilots, Computations show
that such alrplenes are spirally unsteble only at sufficlently large
angles of attack but are spirally stable at small angles of attack,

A method of computation of the latersl-dynamic stability is
presented herein. The computation is 1llustrated by examples of
the computation of a Northrup 2E airplane, which has recelved the
highest commendation of pilots for 1ts piloting characteristics with
regard to stabillity and maneuverability. ) _ .-
The difficulty of computing the dynamic stability lies in the )
fact that & large mumber of aerodynamic cocefficients, the so-called

*"Ragchet Bokovol Dinamicheskoi Ustoichivosti Samolets.” Trudy
Tsentralnogo Aero~Gidrodinamicheskogo Instituta, No. 453, 1939,
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rotary derivatives, are required for the computation. These deriva-
tivea are not encountered in the usuval sercdynamic computaticn. Im
order to facilitate the computation, a nmumber of curves are given
with the aid of which these magnitudes are rapidly and simply deter-
mined, The numerical examples given for computing the coefflcients
further simplify the problem,

- 2074

A comparison of the aerocdynamic coefficlient obtained by compu-~
tation from graphs and that determined from tests in the wind tunnel
is presented herein, In order to check the accuracy of the final
data, a comparison is given of the perlod of oacillation and the
time taken for the damping of the lateral motion as obtained from
flight tests and by computation, respectively. The comparison shows
that the computation gives good results.

Notwithstanding the apparent complexity, the entire computation
on the lateral stabllity from the available aerodynamic coefficilents
takes no longer than 1.5 to 2 hours, The author expresses his thanks
to A, I, Silman, a candidate for a technical degree, for a number of
valuable suggestions utilized in this work,

SYSTEM OF AXES AND NOTATION -

The system of axes is shown in figure 1. The origin of the
coordinates is at the center of gravity of the ailrplans, n

The X-axis 1g in the plane of symmetry of the airplane and dir-
ected parallel to the velocity in sbeady flight. The Y-axis is per-
pendicular to the plans of symetry of the sirplane and directed to
the right of the pilot, The Z-axis is in the plane of symmeiry per-~
pendicular to the X-axls and directed downwards.

X, Y, 2 forces along correaponding axes; positive if
direction agrees with direction of axes

L, M N moments about corresponding axes: moment L 1is
positive if it causes right wing to drop;
moment M 1s positive if 1t causes tail to
drop; moment N is positive if it causes
backward motion of right wing -

u, v, w proJections of lineer velocity on correéponding
axes; positive 1if direction of projections e B
agrees with directions of axes B C

Dy G T - projections of angular velocities; have same posi-
tive directions as moments L, M, N
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A, B, C

angles made by given direction with X-, Y-, Z- T
axes respectively; have same positive direc- ’
tions as L, M, X

moments of inertia about X~, Y-, Z-axes

the centrifugal moment of inertia [Ed. note,
product of inertia wilh respect to X- and Y-
axiﬂ

angle of attack, degrees ' : _

angle of attack computed from lins of zero 1ift,
degrees

sldeslip angle, B = ~arc sin v/V, radians [NACA
comrent: B as used in this report is of
opposite slign to B as used in American aemd ST
British reports) -

angle of inclination of flight path to horizon-
tal (positive for 1ift), degrees

angle of dihedral of wing, angle between plane
of chords and plane at right angles +to plane
of symuetry and passing through chord at tip,
degrees

angle of sweepback, angle between focal line at
0.25 chord computed from leading edge and
plane perpendicular to axis of fuselage
degrees

angle between line Joining center of gravity T e
of airplane with geometric center of verti-
cal tail surface (with part of fuselsage)
and line of zero 1ift, degrees

area of wing

area of vertlcal tail with part of\ fuselage
(fig. 11)

area of lateral proJjection of fuselage

span
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chord at root of wing

chord at tip of wing, effective tlp chord 1is
determined by prolonging lines of leading
and. trailing edges

aspect ratio

taper of wing

distance from nose of fuselage to center of
grevity of ailrplans

distance from rudder hinge to cenbter of gravity
length of fuselage
density of the ailr

coefficient of effectivenesa of vertical tall
surface

coafficlent of lateral force

coefficlent of rolling moment

coefficient of yawing moment
1if+ force coefficlent

nond imensional derivative of lateral force wilth
respect to sideslip angle (B in radians)

nondimensional derivative of rolling moment with
respect to sidesllp angle

2074
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3 _
ng = —_— nondimensional derivative of yawing moment with S
oB ' respect to sidesllip angle
oC L
Zp = ———% nondimensional derivative of rolling moment with -
. 3~§v respect to angular velocity of roll e
oc
n, = s nondimensional derivative of yawing moment with
a.g% resgpect to angular velocity of roll _
1, = 801 nond imensional derivative of rolling moment with
r
S %% respect to angular veloclty of yaw oo
Ny = BGn nondimsnsional derivative of yawing moment with
8-%% respect to angular veloclty of yaw
1 =._é% coefficient of moment of inertia about X-axis
mb
In = _ég coefficient of moment of inertia about Z-axils
mb .
G weight of sirplane )

mass of airplane

relative denalty of airplane ) o

G

8

_2m

oSb

n +t of time
T=?;§-v_' anlt o

; nond imensional time ' T

As,

Ap, Ay, Ay coefficients of characteristic equation
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1. EQUATIONB OF IATERAL-DYNAMIC STABILITY OF AIRPLANE

If the rectilinear asteady flight of an airplans is considered,
the motion of airplane after a certain disturbance 1s described by
a system of six equations with six variables:

u’ w}_ q-’ and B} p’ r

If. only small deviations of the airplane from steady recti-
linear rlight are considered, it may be shown (reference 1) that
the system of six differential equations breaks up into two inde-~
pendent systems of equations., In the first system of differential
equations the following variables enter:

u  projection of linear velocity on X-axis
w proJection of linear velocity on Z-axis
g projection of angular velocity on Y-axis
In the first system of equatlions, there enter only variables
characterizing the motion of the airplane in the plane of symetry

(that is in the plane X0Z). In the second group of equations there
enter the varlsbles: :

B angle of sldesllp, determined by projection of velocity on
Y-axis (sideslip velocity v)

P projection of amgular velocity on X-axis.
r projection of angular velocity on Z-axis

The varliables B, p, and r characterizs the 1atera1 motion of the
alrplans, :

By assuming the nondependence of the'laﬁefal'mdtion of the air-
Plane on its longitudinal motion, the squations of the lateral dyna-
mic stability can be derived.

For ateady rectilinear £light without sideslip

2074
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7 (1)

u=7yV "

where V 1s the velocity of the alrplane.

After a certain lateral disturbance, the magnitudes p, r, and v
will vary with time, whereas the magnitudes q, w, and u may be con-

sldered constant,

Because at the initial Instant p=r =v = 0, the disturbances
of the magnitudes p, r, amd v are deno%ed by the same symbolse:
AP =P
Ar = r
Av = v

Evidently, the lateral motlon of the airplane will be characterized
by three equations' (a) the eguation of the equilibrium of the for-
ces along the Y-axis, (b) the equation of the equilibrium of the
moments of the forces about the X-axis, and (c) the equation of the
equilibriwn of the forces about the Z-axils, By the fundamental
equation of mechanics, the product of the mass of the airplane by
the projection of the absolute acceleratlon on the Y-axis 1s equal
to the proJjection of all external forces acting on the airplane on
the Y-axis,

In the gensral case, the projection of the absolute accelera-
tion of the Y-axis is equal to (reference 2)

dv
it + ru -~ pwW

and the equation of equilibrium of the forces along the Y-axis will
be of the form

(g: + rv) =Y _ (2)
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For the case unier considerationl
1=V am w=0 ' s

In equation (2), Y denotes the sum of the projections on the Y-axis
of all the external forces acting on the airplane so that

Y=Y3+YW (3)

where

Y, projectlion of aserodynamic force on Y-axis

Yﬁ projection of weight on Y-axias

In what follows, it 1s assumed that the aerodynamic force aoting
on the airplane during a disturbed motion and the small deviations
from the condition of steady rectilinear flight depend linearly on
the disturbances, and because at the Initlal Instent no lateral force
acted on the airplane the serodynamic force 1z glven by

T, %% v + g% P+ g% r

Tf the small magnitudes %% p and %% r are neglected, the fol-
lowing equation is obtained: '

Ya = % v _-_ (4)

In symmetrical flight there are no gravitational forces acting on
the airplane along the Y-axis, If the airplane rolls, a component
appears on the Y-axis. When small oscillations occur, the force
acting along the Y-axls for a rolling angle ¢ 1s equal to

(figs. 2 and 3)

G cos 6-O

im a rigorous derivation, the term  pw drops out as a mag-
nitude of second order of smallness.
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whers 6 1s the angle of inclination of the flight path. Similarly,

for the rotation of the alrplane about the Z-axls by an angle ¥
the component along the Y-axis (fig, 4) is

G sin 8y
Hence, for small deviations
Y, =Gcos 69 + G sin 8.y = G cos 6(P + tan 6#)

But
V2
Gcos 6 =Cp, 28

Therefore,
2
Yp = Cp, Eg_. S(p + ten 6-¥) | (5)

For small osoillations of the alrplane, it may be assumed that
V=-VsinBy - VB

When this relation is taken into account and equations (3), (4),
and (5) are substituted in equation (2)

z
mv(-%%+r) g_x CLZS(¢>+tan9\[f) (8)

The equations of equilibrium of the moments about the X- and Z-axes
are of the form (reference 3)

A%%-Eizsx,

(7)

ar a . _ -

or g &2 _
Cxx-Ex =¥

The moments of the aerodynamic forces I. and N on the free motion®
of the airplane after a disturbance will depend on the angular veloc-
ities p and r and the angle of sideslip B, For the small dis-
turbances ©p, r, and B, the amerodynsmic moments may be repressented
as follows by a linear dependence on p, r, and B.

2The free motion of the airplane after a disturbance with locked
controls,
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Equations (7) now become
AR
TR

system of three lineer homogeneous differential equations ie

oL

o,

B+3—p+-5—r

ON

N

B+35p+-6—r

oL
=B_B'B

%E P+ 6; r

ON

=§"B+E—P+§EI‘

If equation (6) is differentiated together with eguations (8), a

obtained because p = &p/dt and r = dy/dt.

2
+ Cg, Eg— S(p + r tan 6?

g’fﬁg dr] dY ag

EW'(- P ) EE it
A %2 E gi BL B + 55 P +-5— r
c %E %% BN B +~%% P+ EE r

~

NACA TM 1264

(8)

(9)

Nondimenslonal magnitudes are now introduced by the equations

Y

it

va

ove
cy S~ 8

(10)

. _ _ :
Cy 18 here the lateral force coefficient which should not be
confused with the previocusly used notation for the lift coefficlent.

2074
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mb2
¢=to
]
B = ip g
- I°]
=iz
T -XIb
-2V
dy Xy 72 v2 3¢
$-% T o-mirs T8 =
C aC
C 2 3¢
%ggs-ﬂ}-l%-Sbsnﬁ%Sb nB=BE_
AL, 3L pp = 3 ov? o _%
ﬁ?:mzvapm%—sbzplp‘é‘-s'b szaﬂ
2v 2v : 2V
2 3c
grzrlr-eg—_Sb Zrz'a—'—z'.'%
v
- 2 ¢
g—gp= n.p-eg—Sb 2;1%
2v
ON - G &Cn
ErBrHrE'Z'“Sb nT:r?_E
2v

If all terms on the left in equation (9) are transferred and
the nondimensional masgnitudes are introduced, the system becomes
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a2p 2V dr ov2 g oV2 2V -
WoE-W L att z W ag+tlLz 8'p (P+rtens) =0

mb2 2V ap mb? 2V a7 ovE - o
W T T gt iE T % gz~ 3 Sbilpp-5 Sblr- 2__313135_,0

m? 2V aF _ mp2 2Vap ov® . - oV . V@
e vaE-kTs v a2 Sbnpp-‘e—‘g stn,T - 55~ Sbngs = 0

If the first equation of the system i1s divided by 0éV382/m,

2 2
the secord by 1y 250 ana the third by 1y 252 the Following

equations are obtalned:

n\a% 1 a8 m °L 2m_ _2n omdr
PSV) 342 Y29 dt o8V + 2 08b P ~ oSb oSV AL *+
L -
2 50 tan 6Xr = O
3, , md - Emoar lro
L Ptogvat - P-T Svat - I, ¥ =0

. Pp- B map moar Pro
T PP At Ev A - g T =0
By sgetting
T =B
oSV
(11)
_2m
and by introducling & nondimensional time by the equation_
- t
=3 - (12)

| 2074
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Moreover, if the signs in the second and third egquations are changed,
the following system of equations in nondimensional form is obtained'

dzB a8 Cr — dr c’L )
25 yB at ' 2 R b ten 6r

2 = 1 = |
Eﬁﬁ-g;i+—25+i—E-£§+—l-‘-;=0 f (13)
A dt

The megnitules g = 32, Tg = 350, and 1 = Bs_z are determined

from the usual tests in the wind tunnel and are denoted as the sta-
tic derivatives, The magnitudes 1y lps Dy, and npy characterize

the moments of the aerodynsmic forcee in rotation and for this rea- .
son they are known as the rotary derivatives,

2. THEORETICAL DETERMINATION OF DERIVATIVES OF
LATERAT, DYNAMIC STABILITY

As hes been pointed out, all aerodynamic coefficilents are
referred to a system of axes: the X-axis is parallel to the veloc~
ity and passes through the center of gravity of the airplane at the
initisl instant; the Y-axis passes along the span of the wing to
the right of the pilot; and the Z-axis is perpendicular to the firat
two and directed downward3 The positive directlon of the angles of
rotation and of the momsnts are asgsuned to be the following:

about the X-axis, motion from the Y-axlis to the Z-axls .
about the Y-axis, motlon from the Z-axls to the X-axis -
about the Z-axis, motion from the X-axis to the Y-axis ' ‘

'This system of axes 1s fixed in the airplane so that the .X-axis
coincides with the velocity of_the alrplans only at the initial

3This system of axes 1s in accordance with the terminology
adopted by CAHI, May 1939,
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instant of time, For a disturbed motion of the airplane, the X-axls
of the fixed system of axes makes an angle 8, whilich is termed the
gldeslip angle, with the flight veloclty.

The moments about the X- and Z-axis are denoted by L and N,
respectively, and the angular velocities about—the X- and Z-axis By
r amd r, respectively.

ROTARY DERIVATIVE iy

In the following discussion, all the derivatlves in the below-
stall range willl be considered. In the case of rotation of the air-
plane about the X-axis (angular velocity p), an aerodynamic damping
moment arises about the same axlig, This moment msy be determined by
the equation

L-% it G- QV'Z
where
Zp moment ccefficient
2 -7 nonlimensionsl velooity of roll - -

Here as usual (reference 1) , & linear dependence of the aerodynamic
resction on the disturbance lg assumed., The rolling moment 1s pro-
portional to the fourth power of the linear dimension, and therefore
the moment on the tail surface for an angular veloclty p 1s neg-
1igibly small as compared with the moment acting on the wing.

Hence, in computing lp only the moment acting on the wing shall

be taken into consideration,

On rotation of the airplane about the longitudinal X-axis with
angular veloclty p > O (the right wing drops); at a f£light veloc~ .
ity V, it is found that the angle of attack increases on the right
wing. At the distence ¥y from the plene of symmetry

2074
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Similarly, on the left slde of the wing the angle of attack decreases.
A moment therefore appears oppesing the rotation. Thus, for p> O,

L < 0; and the coefficlent of the derivative of the rolling moment
with respect to the angular velocity of roll is always (at below-
stall angles of attack) negative (fig. 5) 1, < 0. Figure 8 gives

curves by which Ip for wings of various aspect_ratios and tapers
may be determined (references 4 and 5).

Example: 1 = 1,94, A = 6.34,

From figurse 6: 1, = -0.485,

b

It can be seen from the curves that lp increases 1n absolube
vaelue with an Increasing aspect ratio of the wings and that lp
decreases with increasing taper 1 ' '

The value of Zp is computed on the basis of the general theory

of the wing with account taken of the change in the distribution of
the circulation along the span duve to rotation without considering
the change iIn veloclty along the span. At below-stalling angles,
the derivative Zp theoretically does not depend on the Initial

twist of the wing nor on the angle of attack of the entire wing.
The magnitude lp varles 1little for different wings, as may be seen

in figure 6, The mean value is IP = ~0.45, The slgn of Zp may

change only in the above-stalling range In the region of autorotation
of the wing,

ROTARY DERIVATIVE n,

In the rotation of the ailrplane about the X-axis, the angle of
attack varies along the wing span and as a result the 1ift force
and the Induced drag will not be the same at symmetricel elements.
Hence, when the alrplane rotates about the X-axis, the airplane will
be acted on by a moment of the aerodynamic forces’ both about the
X-axis (Zp) and ebout the Z-axis (np). As before, consider that

the moment about the Z-axis arising for angular velocity ?p is pro-
portional to the angular velocity of rotation, so that

N = %% anSb

where gq 1is the dynamic pressure,
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The moment of yaw due to the angular iélocity depends 1llttle on
the tall surface so that in the computations for the dynamic stabil-
ity only the moment due to the wing is taken into account.

For positive rotation in roll p > 0 (right side of wing drops),
the results show that on elements of the right and left wing the 1ift
force vecter L and the vector of induced drag D are rotated and
changed (fig. 7). The airplane will therefore be acted on by a
moment about the Z-axis (moment of yaw), which for negative angles
mey be positlve and with increase in the angle of attack of the wing
varies linearly so that at moderate angles of attack n, 1is always

negative (np‘< 0 (fig. 7)). Curves of the values np/aa (refer-

ence 4) for untwlsted wings% of various tapers and sspéect ratios are
shown in figure 8, The curves give the valuss of np/“a where a,

is the angle of attack in degrees and 1s computed from the line of
zero 1ift, Hence, in order to actually compute the value of ny, it

1s nscessary to multiply the value obtained from the curves for the
given wing (given aspect ratio and taper) by the angle of attack (in
degrees) computed from the line of zero 1ift. .

For example,.n = 1.94, A = 6,34, ay = 9° (a, 1s computed from
the angle of zero lift). From figure 8, np/aa = =0, 00395 and, there-
fore, (npla = 9% = -0.00395X9 = -0.0356.

ROTARY DERIVATIVE 1,

For positive angular velocity r, the left wing moves forward,
that is, the left wing has a greater velocity than the right wing.
Therefore the 11ift force on an element of the left wing will be
greater than the 1ift force on the symmetrical element of the right
wing end as a result the alrplane will be acted on by an aerocdynamic
moment tending to 11ft the left wing, that 1s, a positive moment
about the X-axis, With increase in the angular veloclty r, the
moment L Iincreases in magnitude and the derivative of this moment
with respect to ths angular velocity T = rb/2V will be positive
(at positive GL)

“The value of np 1ittle affects the characteristic of the

dynamic stabllity and therefore a correction for the twist of the
wing need not be introduced.

5Here, gs previously, linear dependence of the moment on the
angular velocity 1s assumed as 1s permissible because only small
anguler velocltles are considered and the terms containing the
squares of these veloclties may be neglected, '

2074
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The coefficlent 1,, 1s determined for the wing and is propor-

tional to the angle of attack ogy. Evidently, both the wing taper
and the aspect ratio will affect the valus of 1,. Curves of the

varlation of lr/ca for untwisted wings of various tapers and

aspect ratios are given in figure 10. From the curves it may be
seen that 1,, decreases with Increase In the taper and Increases

with Increase in the aspect ratio.

It is also apparent in figure 10 that 1,./a, for various types

of airplane changes little with wings of different tapers and aspect
ratios., The mean value is 1,/a, = 0.017
_ 0.018

In order to obtain the value of 1, at a given angle of attack,
the value lr/da cbtained from the curves must be multiplled by the

angle of attack (in degrees) for which the computation is conducted
(the angle of attack is measured from the line of zero 1ift).

For example, 7 = 1.94, A = 6.34, o, = 9°, From figure 10
Zr/cxa = 0.0185; 1, = 0.0185X9 = 0,1665. The vertical tall surface.
will also affect the derivative 1,. of the airplane. The part of

1, due to the tall may be obtained from the eguation

1,\? Sie '
1, =ag Kt(_f') 5 sin 2(x ~ aa), (14)
where
ay = (p/%)y (fig. 11).

Ky empirical interference coefficient at tall, mean
value = 0.8 :

distance from center of gravity of alrplsne to
rudder hinge

17
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St ares of vertical tall surface with part of fuselage
b wing span
8 wing'areﬁ
x angle between line of zero 1lift and line connecting

center of gravity of alrplane with geometric cen-
ter of vertical tall surface (including part of
fuselage) (for a low wing airplane x > 0)

Og angle of attack (from line of zero lift), degrees
. g Sgr
Example: oy = 2.05 Ky = 0, 5 = 0.389 -l 0.093
x = 12° :

To find I, for a = 9°, from equation 14y - —

1.4 = 2.05x0.8(0.389)4x 0,093 % 0.105 = 0.00242

CORRECTION ON DERIVATIVE 1,, FOR IWIST OF WING

In order to Introduce a correction for twist, it 1s necessary
to use figure 12. Only the actlcal .debermination of the correc-~

tion will be considered here The correotion for twist for wings
of various aspect ratios and the taper n can be found by use
of figure 12, -

For a taper different from 3, the correction would be scmewhat
different but the error will be very small and it may therefore be
assumed that the correction for twist does not depend on the wing -
taper, Assume, for example, the correctlon for the wing is found
to be A = 6, 34 the twist of the wing starts at the distance
0.226 b/2 from the root, increases linearly, and at the tip attains
the value 1.5°.

At the distance = 0.226 b/2 from the root, the twist is
equal to zero (fig, 13(b)) In figure 13{a) at y 0.226 bv/2,
4 = 0.001. Subtracting this value from D (fig. lS(a)), 0.0168 is

SThis method and the curves are taken from reference 5, where
a more detalled description of the curves is fourd,

2074
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obtained, This number is plotted in figure 13(c) and corresponds to

an angle of twist equal to zero; therefare, on the curve of fig-
wre 13(c) the point (0, 0.0168) is plotted It can be seen that at
the distance 0.4 b/2 the angle of twist is 0.3° (fig. 13(b)) amd
from figure 13(a) A = 0.003; l./a =D - Ay = 0,0158. In fig-

ure 13(c) 0.3° is plotted as the abscissa and -0.0158 as the ordi-
mate, and so forth.. A certain area is then obtained on the plani-
metering for which the correction in 1, 1s obtalned.

For the given case, 1, ty,igt = 0.0144.

This correction does not depend on the angle of attack of the
wing .

For the total value of lr
ip
[ =(§; g, + lpg + Iy twist (15)

Example: find 2,.: N = 6.34, n = 1,94, oy = 99, ay = 2.05,
K, = 0.8, 1./b = 0.389, S.,/S = 0.093, x = 12°

The twist starts at 0.2268 of the half span, Increases linearly, and
at the tip reaches the value 1.5°

Lo = (0p/ap)ay + Lpy + Iy pyigy = 0.1665 + 0,00242 + 0.0144 = 0.1833

ROTARY DERIVATIVE n,

During an angular veloclity of rotation about the Z-axis (angu~
lar velocity of yaw r) a yawing moment arises, which depends on
the vertical tail surface, the fuselage, and the wing. A%t an angu-~
lar velocity r, on account of ‘the differenne in the velocities at
the symmetrical elaments of the wing, different drags are cbtained
as a result of which there arises a moment about the Z-axis (moment
of yaw N). Evidently, the moment N due to the wing will be neg-
ative for positive values of r (fig. 14). Similarly, for the
angular velocity r > 0 a negative yawing moment is found to ariae
because of the fuselage and the tail,

TThe value of 1 £ “is pésitive for the case where the

r twis

angle of attack at the tip of the wing is greater than the angle of -
attack at the root section, e

N

19
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The yawing moment will increase in absolute value with Increase
in r; hence,

2074

rb )
N = v nrqu B

n.< O (fig. 14).

The effect of the tall and the wing on the derivative n, will now
be considered.

Effect of Vertlcal Tail Surface on n,

In the oscillation of the airplane about the Z-axis, that is, at
an angular velocity r, the tall surface is found to be acted upon by
the force

2 _
dCL rig pstfv t
= cog il X - Q
F (dm )t v 2 ( a.)

where X 1s'the angle between the line of zeroc 1ift and the line
connecting the center of gravity wilth the geometric center of the
vertical tall surface with part of the fuselage. For a low-wing
airplane, the angle X > 0. In the expression for the force during R
oscillations about the Z-axis there enters cos (x-aa) because the

system of axes 1g fixed, If the derivative of the moment of this
force is taken about the center of gravity with respect to the non-
dimensional angular velocity ¥ = rd/2V,

aCr) 13y oSypVl4
Nrt = .—2 (dd, )'b B > 0052( X - Ga)

Finally, the nondimensional derivative n, 1s obtained by dividing .-
this expression by oSVeb/2

ac 1.\2 8 v.\2
e = -2 (52, (—52) (%) contx- )

In this equation no account is taken of the effect of the fuselage
on the flow at the vertical taill surface, The indeterminancy of

the magnitude of the interference at the vertical tall surface makes
the theoretical ccmputation of the moments due to the vertical tail
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surface inaccurate., .An empirical coefficient X, characterizing
the veloclty inberference at the tail surface is therefore intro-

duced. Moreover, setting
acy
o Jv = 5%

AR
t tE
Dy = ~2K 8y (1;) < cosZ(x - ag)

glves

By permitting a small error, it may be assumed that cos®(x - ag) *1

and then
2
LY Ser
where

1 distance from cen@er of gravity of alrplane to rudder hinge
b wing span _
Sgp areé of vertical tall surface wlth part of fuselage
S area of wing
For the coefficient Ky, the valus 0.8 may be taken.

The value of at depends on the aspsct ratlo of the vertical
tall surface. :

Figure 11 shows the dependence of ay on the experimentally
obtained aspect ratio Ay (reference 6). The mean value of the
coefficient a; -for airplanes of the usual type is

a.t = 2,2

In order to compute the aspect- -ratio of the vertical tall surface

A,, the span of the tall b, must be taken as shown in figure 11.

In the taill surface area Stf there 1s included the end of the
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fuselage (hatched area in fig. 11). The effect of the fuselage is
not taken into account in equation (16). In the same manmner as for
determining the damping of longitudinal osclllations, the coeffi-
cient 1.25 in equation (16) is introduced to take account of the
fuselage. Then

2074

15\ Sir
nppp = 2.5Ktay| 3] g (162)
Exsmple: Ky = 0.8 ay = 2,05 i
24/b = 0.389 Sge/S = 0.093

By formula (16a),

negp = 2.5% 0.8X2,05% (0.389)2% 0,093 = -0,0577

Effect of Wing on Derivative Ny

For positive angular velocity asbout the Z-axis (r > 0), the
velocity on the left wing lncreases and on the right decreases,
Hence, the drag on the left wing will be greater than on the right
wing and there appears a momert about the Z-axis acting against .
the rotation (fig, 14).

The demping moment of =n, from the wing 1s due to the Induced
and profile drags.

Curves for the determination of n, of the wing due to the
induced drag are glven in figure 15. In order to determine n,
from figure 15, it 1s necessary to multiply the value of n,./a,2
by aaz where a, 1s the angle of attack of the wing computed
from the line of zero 1ift in degrees. The part mn, of the wing,

which is obtained as the result of the profile drag, is small and
nesd not be taken into account® .

8The curves for computing this part of the derivative ne are
given in reference. 5.
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Example. Find n, of the wing: 7 = 1.94, A = 8.34, o, = °.
In figure 15, npfay® = -0.000147, ng, = -0.000147x 9% = -0.0119,

The total value of the derivative n, Ffor the alrplane may be
obtained from the formula

Dy = Dpgp + Opy  (16D)

Example: Find n,, of the airplane Gy

9,

The characteristics of the wing are: 7 =1.94 and A = 6.34,

The characteristics of the tail surface are Sif/S = 0.093,
14/b = 0.389, Ay = 1.14,

Dy = Dpgp + Dy = =0.0577 - 0.0118 = ~0.0696
It must be borne in mind that at times the Interferencse of the

fuselage has a strong effect on n,.. For exampls, for one model a
value of n, of the tall and the fuselage was obtained equal to a

third of the derivative n, for the tail only. Hence, & sufficiently

reliable determination of n,. can be obtained only by experiment.

The theoretical equations for determining n, may in individvel cases

give considerable error and should be consldered only as rough
approximationsg.

Equations have been derived herein for the computation of the

rotary derivatives, that is, the coefficients of the moments obtained

during rotational motion of the airplane (yaw or roll)., The deter-
mination of the cosefficlents of the forces and the moment of the

aerodynamic forces in sidesllip follows. These coefficlents are called

static derivatives.

SEarly in 1940 at CAHI, work will be completed on the determina-
tion of the derivative n,, for 10 to 15 models. From this investi-

gation, the value of the derivative mny can be obtained for similar
airplanes,

23
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DETERMINATION OF STATIC DERIVATIVE ZB

For a positive sideslip angle B +the left wing moves forward,
the flow under the left wing tending to 1Lift 1%, that 1s, for
B> 0 the rolling moment L 1s positive and

L = LBﬁ'z BZBqu >0
g> 0 (fig. 18)

Experiment shows the static derilvative 25 may be found by
the formula

I} o1
IB airp™ (IB)-J/ =0 *V¥ Wﬁ + xﬁ_ﬁ_ + "B fus + lﬁt (17)
X=0

where
v angle of dlhedral of wilng
X sweepback angle of the wing

The characteristics of the indlvidual terms in the equation
will now be discussed., The magnitude (IB)WWﬁo gives 15 for the
' X=0
wing in the absence of sweepback and dihedral, The derivative
(IB)szo arises from the change in dlastribution of the ciroulation
X =0
over the wing span as the result of the sldesllip. Tsest curves show
that this derivative inoreases with increasing angle of attack,

This magnitude cannot be computed on account of the absence
of test data. The plan form of the wing considerably affects the
value of this coefficlent. A rectangular wing without rounded tlps
gives a value much greater than a wing with rounded tips (reference 7).

The effect of the dihedral of the wiﬁg ig taken care of by the

o1 :
term Ei?' The angle of wing dihedral ¥ 1s measured bhetween the

plane of the chords and the plane perpendicular to the plans of
symetry of the alrplane and passing through the rgot'ohgpd (fig. 17).

2074 -
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Experiment shows that 1g 1s proportlonal to the dihedral V
with a coefficlent of proportionality Blﬁ/aw, which may be deter-
mined from figure 18, which gives the values of the derivate IB
for a wing without a straight mldwing sectlon.

Example: Find 1, of the wing: n = 1.94, A= 6.34, ¥= 4.25°,

8
According to figure 18, azﬁ/a¢= 0.0133,

ZB =Y W‘ = 4,25X0.0133 = 0,0585

For a wing with a midwing section it is necessary to subtract from
the value obtained from figure 18 the amount

(%—:;E)mw = 0.02 (3{,2)2 (18)

where b,./b 1s the ratio of the span of the midwing section to the

span of the wing. The angle <+ in this case 1ls to DPe measured asg
shown in figure 17(d).

Bxemple: 1 = 1.94, A= 634, ¥ = 4.25%°, by /b = 0.226

g = .25 [0/0133 - o.oz(o.zze)a] = 0,0523.

Teste show that the tip of the wing greatly affects the value
of the derivative lB. The wing tip in vertical proJjectlion may be

such as shown in figure 19,

From specially conducted tests (reference 7), 1t was found
that if the wing tlp is of the shape shown in figure 19(c), the
effective dihedral is increased by 1 to 1.5°.

Effect of Sweepback .

The angle of sweepback is measured between the lines passing
through the foocal line at 0:25 chord from the leading edge of the
wing and the plane perpendlcular to the axis of the fuselage. The
sweepback angle % will be considered positive for the direction

a5
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shown in figure 20. For a posliive sweepback at a positive sideslip
angle, the flow about the left wing 1s improved and the 11ft force

on the left wing 1s Increased. As a result, an increase in the roll-_
ing moment is obtained for positive sweepback -

X>o, 1B>o _.

The effect of sweepback is taken into account in equation (17) by

al . ] .
the term X ETE' At the present time sufficlent data, by use of

which the effect of the sweepback for diffserent wings oould be
determined, are unavailable., F, Weick (reference 8) recommends
for rectilinear wings of aspect ratlo 6 the equation

31
57? = 0.0045 Cp (19)

where A 318 the sweepback angle in degrees.
Example. X = 2.5°, Oy = 0.73(a = 9°)

From equation (19)
]

31
- = 2.5(0.0045%X0.73) = 0.00822
13 =X 335 2.5(0.00 } =.0.00

Effect of Position of Wing Relatlve to Fuselage

The previously descrited relations give- ZB for isclated wings,

Tests show, however, a very great effect of the position of the wing
with respect to the fuselage on the derivative ZB. It was found,

for example, that a center ving gives a value for IB approximately

agreeing with the value for the isclated wing. A high wing increases
the effective 8ihedral by 1° to 1.5° and a low wing decreases the
effective dihedral by 2° to 5°. This change in the effective dihed-
ral occurs, however, at small and medium angles of attack, At large
angles of attack different results may be obtained, which at the
present time, due to the absence of sufficient test data, cannot be
oven approximately predicted.

On account of the resistance c¢f the flow, all projectlions at
the lower surface of the wing increase IB and conversely all pro-

Jectlions on the upper surface decrease ZB. In a fixed system of

| 2074
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axes, the X-axle passes belov the center of pressure of the vertical
tall surface; therefore, the vertical tall surface will also give a
rolling moment in sideslip. If the angle between the line connecting
the center of gravity with -the center of pressure of the vertical
tall surface and the velocity is dencted by a - x

1y S¢r
19t = Ky a5 3 g sin(x - o) (20)

Example, K = 0.8, 1;/b = 0.389, Sy¢/8 = 0.093, a4 = 2.05, x=12°,

Cla=9o
By equation 20

ZBt = 0.8X0.389X0.093X2.05X0.0523 = 0.00597

It follows from the foregolng discussion that the derivative
IB wey be determined with sufficlent accuracy only by experiment,

These equations for determining the effect of the dihedral and
sweepback of the wing may be used for estimating the changes in the
airplane parameters after tunnel tests., For example, if from com-
pubtation of the test data it i1s found that it is necessary %o
increase ZB by 0.026 and the parameters of the wing are 5 = 3,

A =7 (without mid wing) the required increase in the dihedral
AY 1is obtained from the relation Ay X 0.0133 = 0.026  (the valuse
0.0133 is obtained from fig. 18) whence Ay = 2°, If in another
case it ig necessary (for example, from considsrations of longi-
tudinal stability) to decrease the sweepback by X = 5°, tte
change in 15 ocan be found. (The computation is conducted for

the initial state of flight of the glven airplane)., Let C;, = 0.8

o1
3% = 0.0045C; = 0.0045X0.6 = 0.0027

AZB = 0.0027X5 = 0.0135

Hence, decreasing the dihedral by 5°, ZB decreases by AZB = 0,0135,
In order to compensate for the decreage in IB the dihedral of the
wing must be increased

AYX0.0133 = 0.0135

Y

27
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whence
AW:lO ) _

that is, the dihedral must be increased by 1°.

DETERMINATION OF STATIC DERIVATIVE ng

The static derivative ng = OCp/0B characterizes the change

in the momeént of yaw with change in the sideslip angle and depends

mainly on the area and the shape of the vertical tail surface and

the fuselage. The center of pressure of the fuselage for the usual

arrangement ls located ahead of the center of grevity and for this

reason the yawing moment due to the fuselage for B >0 1s posi- : -
tive, that 1s, the fuselage 1s unstable. As may be seen from fig-

ure 21, ng < O. ' ‘ '

The magnitude of the coefficlent ng 1is determined analyti- -
cally by the equation - - ’

' e dies s Ber
nB = an + nﬁt =X S b - Kt at' B 3] ) (21)
where ’ '
Sf lateral area of fuselage
lf' length of fuselage

The coefficlent KB may be found from figure 22'(£akgn_from - =
reference 9)

where

e length of fuselage (positive)

l,r distance of center of gravity from nose of airplane (positive)
h maximm helght of fusslage (positive)

The coefficient Kg(Kg > 0) umey be determined if the ratios
1p/b and znf/zf are known.
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Example: 1lp/h = 6.0, 1 o/1. = 0.244

. From figure 22 1t can be seen that Kﬁ = 0.1086,

If Sp/S = 0.35 and 1p/b = 0.595 then _
nge = 0,106 X 0.35 X 0.595 = 0.0221. FEquation (26) is suit-

able for airplanss_with unstable fuselages. Sometimes the fuse-
lage is stable (as is rarely the case) and tkis equation cannot
then be applied. The values of &y may be obtained from figure 11.

The mean value for Ky 1s 0.8,
Example: 1./b = 0.389, S;p/S = 0.093, A\, = 1.14.
From figure 11, a4 = 2.05
'nﬁt =
na = Ile + I‘..B-b = 00,0221 - 0.0593 = - Q0.,0372 ~ ° -

- 0.8X0.389%X0.093%X2.05 = -~ 0.0593

Let the area of the tail surface be increased such that
AS; /S = 0.04. Then for the increase in the coefficient ng

Anﬁ = - 0.8X0.389X0.04X2.05 = - 0.0268

Thus, when it is required to increase the vertical tall aresa, the
span must te increased but not the chord. If the vertical taill .
surface 1s Increased by increasing the chord, Kt decreases and

therefore a; also decreases; as a result for such an increase in~

St the weathercock stability (nB) is found to undergo only
glight increases or does not change at all,

The equations for determining the wvalue of ng must be consi-

dered to be only approximete, For a more accurate determination of
ng, recourse must te made to experiment. As in the case of deter-

mining the derivatilve IB, these approximate equations may_bé used
for computing the derivative ng after the tall area is Incressed

or decreased,
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Effect of Propeller

In the present investigation, the effect of the propeller slip-
gtream on the. dynamic-stability derivatives is not considered., The
derivatives ng and mn, evidently will be greatly affected by the

propeller slipstream. Up to the present time hcwever, sufficiently
accurate test data, by which a correction for ‘the effect of the pro-
peller on the tall surface may be intrcduced, are unavailable.

DETERMINATION CF STATIC DERIVATIVE g

The statlic derivative 7a (fig. 23) is always positive
(yB > 0). The derivative va characterizes the increage in the
lateral force (y) acting on the airplane during an increase in

the sideslip angle (B). Evidently, the value of Ya depends _ o

essentially on the size and shape of the fuselage and of the ver-
tical tall surface. Diehl (reference 10) recommends the following
empiricel equation for computlng the derivative ¥gt

ble _ S I

yg = 0. 12'—-— - - - (22)

Example: b = 14.53, lp = 8,67, S =33.4

= 0.12 —=
g =0 33.4 :
For alrplanes with ususl fuselages, the mean value of yz I8 0.4;
therefore, the derivative yz has little effect cn the character-
igstics of dynemic stability.

3. EXPERIMENTAL DETERMINATION OF DYNAMIC-STABILITY
DERIVATIVES

The dynamilc—stabllity derlvatives are divided into two grecups;
namely, the derivatives of the moments and forces with respect tc
the angular velocity, which are called the rotary derivatives, and
the derivatives of the moments and forces with respect to the side~
sllp angle, which are the static derlvatives,

2074
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The rctary derlvatives may be determined in a wind tunnel on
special apparatus. The procedure of these tests is, however, rather
complicated and they will not be considered bherein (reference 11).

The static derilvatives ng, IB, and g may be readily

obtained from the results of the uvsual tests in the wind tumnel. _ _' -
For this purpose it is necessary to have the coefficlents cf I A,
yaw and roll and the lateral force (Cp,, C;, and Cy) for vari- T T

ous angles B at the given angle of atbtack. Curves are given in
figures 24 wo 26 for the change in the ccefficlents Cp, C;, and Cy

with sideslip angle.

If these coefficients are given in the fixed system of axes
assumed at CAHT (fig. 1), then in determining the derivative ng, : -
the tangent %o the curve C, = f(B) for £ = O must be drawn e

and the slope of the angle of inclination measured (taking account
of the scale). Special attention must bte paid to the determination
of the slope of the curve C, = f(B). The slope of this curve

characterizes the weathercock stabllity. For statle airplanes, the
curve is like that shown in figure 24, that 1s, the coefficlent Cp,

decreases with increase in the sideslip angle B. For neubral or . _ :
laterally unstable alrplanes, the curves differ to a marked degree T E
from those in figure 24 near f$ = 0 only, in the range from B = ~-30
to B = 43°, where for nesutral airplenes these curves run parallel
to the axis of abscissas and for unstable airplanes the slope of the.
curve changes sign, that is, the coefficient C,; iIn this range

increases with increase in R. For a sideslip angle less than
B = -3° or greater than B = 439, the curves in all cases are as
shown in figures 24, that 1s, the coefficient C, decreases with

incresse iIn the sideslip angle B. Hence, In determining the T e
weathercock stability, the points lying within the range 8 = +30 :
must be considered. During the tests, points must be taken every
1° angle near B = 0 but beyond || = 3° points may be taken
every 2° to 3°, The computations required for cbtaining the deriv- _
ative are presented In figures 24 tc 26. The ccefficlent 57.3 is LT -
introduced into the computation for converting degreées into radians ) )
in measuring the angle B. For & sufficilently accurate determina- ) _
tion cf the derivatives mng, lg, and ya, it is necessary to com- T

pute them for 4° or 5° angles of attack, (See apperdix 1.)

"
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Determination of Moments of Inertia of Ailrplane

In order to compute the lateral dynamic stabllity of the air-
plane, the coefficients of the moments of inertia, which can be
cbtained from the following formules, must be known:
iy = s and 1g =

= T o an = "5
AT e C = me

where

A polar moment of inertila with reaspect to X-axis

C rolar moment of Inertila with respect to Z-axis

b wing span
m mass of airplans

Because for various conditions of flight of the ailrplane (dif-
ferent angles of attack a) the axes X and Z rotate with respect
to the airplane, 1t is evident that the moments of Inertla will vary
likewigse, If the moments of Inertla of ths airplane about the prin-
cipal axes (A' and C') are known, the moments of inertia about the
X- and Z-dxes may be computed. by the following equations:

A=A'"cos @ +C' 8inf @, C=C! cos® P+A' sin? ¢E n‘A"‘—%-g—‘- sin 29

(23)

Computetions show that up to angles of attack o = 15° to 20° it
may be agsuned with a suffliclent degree of accuracy that A = A?

and C = C', that 1z, the moments of inertia about the I- and
Z-axes are equal to the corresponding momentg of inertia about the
principal axes. As will te shown, the centrifugal moment of inertia
has little effect on the stabllity characterigtice and therefore E
need not be computed. ' '

At the present time no sufficiently accurate statistical for-
mulas exist by which the moments of inertla of an airplane may be
quickly determined and it 1s therefore necessary to resort to
analytical computation in each case. Formulas and the computing
procedure of the moments of inertls are gilven in reference 12,

[

2074 '
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The values of 1, and 1o change within the ranges

Determination of "Airplane Density"

The “"airplane density"” u is determined bty formula (11)

G

2m

23

u:gs‘.gz: 7b

where
G/S 1losd/sq meter, (kg/m2)
4 unit welght of air

b span, meters

7]

The computation of the dymamlc stablility 1s usually conducted for
the altitude H = 300C meters and therefore 7 = 0.908 kllograms
per cubic meter, For the altitude H = 3000 meters for standard

atmosphere

Example:

mie

= 78 kilograms per square neter

b = 14,53 meters

78
Wo=2.2 35 =

1 Is a ncndimensional magnitude,

11.8

(28)
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Determination of T

The magnitude T is determined dy equation (11)

T o B
=DSV
In determining u for H = 3000 metsrs

G

g o . .
T = 1.17 (25)

where G/S 1s in kilograms per square meter, V is iﬁ_meters_per
second, and T 1a in seconds.

Example: G/S
per second

78 kilogresms per squgré!ﬁeter_and V = 47.4 meters

78 )

4, BSOLUTION OF SYSTEM CF EQdATIONS OF MCTION

& solution of the system of equations (13) will now te sought
in the form

8 = Bext; P = PeM and T = Re

By suﬁsﬁituting in equations (13) and dividing by exﬁ the following
equations are obtained:

C : C _
()\3+—;‘-y8}\)B+u'§EP+u(—z£tanGo>\) R=0

1 1 - 1
_B _F _E _r.
.(jA)IB - (A - iA) P+ (iA A+ i R=20
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The system of linear homogensous equations has a solubion if the
determinant of the system 1s equal to zero,

c ¢ o
2 . 1 L L
A +3 7 A B3 i (2 'tan69-$5
1 ) i 1
-8 2 E Lo
1p ”\’FiA LML =0
n i
) M E : Ir
i 1c+1c)\ -A+1c

In expanding the determinant, an equation of the fourth degree
in A 1s obtained, which is called the characteristic equation.

At + A\ 4 Agp% 4+ A A+ A =0 (26)
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Analyals of the coefficlents shows that up to angles of attack from
15° to 20° the magnitude iE has little sffect on the roots of the

characteristic equatlon and without large error 1ip = 0.

If in addition, thls analysls is restricted to the considera-
tion of level flight, that is, tan & = O, the following equation is

obtained:

A4=l
L X

Az =\2 ¥p) - [, + g
ly Ny 3 [ o, n
2lx_Tplxy (1 o e o I

TR T P A A (z B T, | T TG (27)

moo (i) ekl o B, Gl

L2998 Y1, 15 " 1g 1, ic i 1, i 2 1,
CL Zrl’lB anr

AO"“_Z—('EZiC'iAic'

Because

¥g >0, 3g >0, ag < 0
Ip< 0, Ip > 0, ny< 0, np < 0, 0, 20
p>0,1, >0, ig > 0
The following relation is usually trus:
Az >0, 8 >0, 44> 0

The cosfficient Ao, the free term of the characterlstlc equatlion,
may be either positive or negative. '

N 2074
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Example:

Ly _o2e; B_1.175; B . o312

2 ﬁ— e L=y 1A- . ] ic” e
1 1
2 _r

= - 7,27; = 3.11

ip *odp |
R ¥
ic = ~ 0,323 -igz- 0.76
C
?? = 0.37; p=11.8

In order to find the coeffliclents of the characteristic equatlon
use is made of equations (27):

1

e Tl (; - I
2 "\L G TEL L (N2 Ty Y e] T T,

1 l Ny '
4 =% vp - [ﬁi +—] = 0,24 -[-~ 7,27 - 0.76) = 8,27

= {7.27X0.76 + 0.52X3.11} - 0.24 [ - 8,03} + 11.8X0.312 = 12.7526

Iy ig  ig 1y

A 1 1A 1 l
Al:(%ys) _EEr_-Bz_xz}+u_“E_2_uZ§_“2+u‘;_L_§

= 0.24 {7.145} + 11.8X0.312X7.27 + I1.8X1.175X0.52 +

11.8X0.37X1.175 = 40.809

1. n 1 n,.

r 8 B )

A = = (—— - - ] = 11L.8X0.37 (- 3.11X0.312 +
0 2 iA iC iA iC (

1.175X0.76) = - 0.3362

37
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If the roote of equation (26) are denoted by A, Ao, KS, and B
h4: the solubion of the system (13) is obtained iIn.the Fform '

2074

At Aot A<b DY A
B = Bye 1 + Boe e + Bzo 5. + Bye 4 ' : T

AT AgE Azt AR :
Pje + Pge + Pze + Pye ) S .=

Lo
"

AT AT AL AT
— 2 4av
r = Rle 1 + Rge S Rse 3 + R4e ’

Evidently, in order that the sideslip angle and the angular
velocities of the airplans 8, P, anl T should decrsase with time
(that is, in crder that the airplane should be dynamically stable),
it 1s necessary that all real roots be negative and that the com-
plex roots have nsgative real parts., In the general casé the solu-
tion of an algebraic equatiorn of the fourth degree is L&borious. In
the given case, however, by making use of the special characteristics
of the equation of 1ateral stability, this equation may be quickly
ani simply solved. The determinablon of the .roots of equation (28)
takes no mors than 20 minutes, I

For airplanes of the usual type, the charactsristic esquation
of the lateral stability has two real roots of which one is very
large and the other very small and two complex conjuzgats. reots, The
small real root 1s denoted by Ay, the large rsal root by Ay, and
the complex conjugate roots by As and A4,_ Because h1 is very

small, the following equatlon may be written with a large degres of Cee
accuracy.

Al)\+AO=O

from which.'hl_'is immed iately determinedall. . . —

10practical. computation shows that the value A 1 = “Ag/BAy 1s - A
accurate, For example, 1f A, 1is graphically determined, the -
obtained value always agrees with A = -Ag/Ay.
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Me-— (28)
1

Now 1t can be seen that 1f Ay <0, then Ay > 0 and the airplane
is unsteble, | .

Example: Ay = 40.809 : Ag = -0,3362

From formula (28)

= 0,00825

M = - A0 _ -0.3362
Ay = 7 20.809

In determining A,, it must be recalled that Az 1s large and there-
fore 1f the powers of )\.2 below the third are neglected, the approxi-
mate value 1is obtailned

A%+ A3~ o0
whence
)\.2 R - As

Computations on many airplanes show that the best approximation for
Ap 1s the valuel :

1
7\.2 ~ =B (29)

i, -

Because 1A> 0 and at below~stalling angles of attack IP <0,
N < O. : L

By setting

A(N) =A% & AzM5 4 ANE 4 Ay N+ Ag

11Usually the value of Ip/ 15 gives a very small error in the
determination of the root )\2. However, a more accurate determination

1s necessary to compute the complex roots of the characteristic equa-
tion (more accurately, the real part),
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for e more sccurate determination of the root hg, A 1is plotted

as a function of A near a value equal to A zlp/iA, by laying

off A on the abscissa and A on the ordinate. The intersection
of the curve A()\) with the abscissa gives the accurate value of
Ap. Because

AT(N) = 4A5 4 3a=NE 4 2ApA 4+ A
anl as & polynomial Ffor large numbers has the sign of its greatest

term and )\2 1s negative, usually A'(\,) < O. Heénce, if after

the firgt trial the point falls above the X~axis, the next value
of A, 1in smaller absolute value is taken, whereas if the point

falls Ttelow the X-axls the next value in greater absolute value ls
taken, Usually, three pointe are sufficient for drawing the curve
A(A) and determining M.

Example: Find AB from the equation

A 4 8.27 A3 + 12.75A2 4+ 40.809 A - 0.3362 = 0

Because lp/;A = -7.26, the value A,' = -7.2 1is used for the first
value of A,1 .

The order of computetion is clear from table I,

The second, third, and fourth powers of .A, which are required
for the computation, may be found in appendix 2, which gives the
powerg of numbers from 2 to 15 in steps of 0.2 ani covers the entire
range of values of A encountered in computation, The curve A(A)
from which Ay = 7.3 is taken, is given in figure 27, After having

found N; amd A, the conjugate complex roots Az, A, are obtained
from the following considerations:

Equation (26) may be put in the form
M o+ AN £ 802 1 AN 2 A = (A=A])(A=A)02 + ah +B) = 0
or .
A, [e -(M +?\2)JA3 + [b-a(M +Ay) + P\l?\zl?@ +
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By equating the coefficients of the same powers of A the following
equation is obtained:

& -(\g + Ag)

b el +hg) + M
1 = aNAy = DN +A)
By = DMA,

whence b = AQ/)\I)\Z; but by (28) A4 = -AO/Al, hence

> >
V] (W)}
] 1]

=
n

= —r ’ (50)
The value of a i1s found from
Az =b - B.O\l +>\.2) + )\.l}\.z

b Ay - Ay
A1+x2

a = (31)

If 2 and b are known, the roots Az ani A, are cbtained from
the equation

A tah+b =0

. & a_
)\3’4=-2i1 b-4

If Ay =f +in, Ay = £~ I and 12

lzTnese formulas are written on the assumption that b > a%/4;
if b < a®/4, the formulas become .

2
a =X
7\3,4?-'2'_1;'\/7:-"3

and in this case the airplane is unstable., If A3< 0, then L 0
and instebility results, A change in the sign of Al is generally

due to the loss of weathercock stability of the airplane.

41
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t=-2 (32)

n=Alb-F ' (33)
Erxample: PFind the complex roots of the equatién

A% 48,2703 + 12.75)2 + 40.809 A- 0.3362 = O
It hee been establighed that

A =+ 0,00825 amd Ay = - 7.3

40.809

-5 - 5,61 and by equations (31)

A
From equation (30), b = --Xi =

b+AAp - Ay 5,61 + 0.00825(-7.3) —12.75
Ay +hy T 0.00825 - 7.3

a= = 0,990

It can be seen with the aild of equations (32) and (33) that

a 0.990
E = -(§>= - =5 = - 0.495

N = b-(—)z = 2.315

5. MOTTON CHARACTERTZED BY ROOTS Aq, Ay, Az, AND A,

The disturbdbed motion of an alrplane is characterized by the
expressions

w
I
o
@
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td
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o}
o
+
o
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!
Hd
(<]
+
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@
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@
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This motion may be broken down Into three components

At AT AT .
17 - 17 = 1
I By=B® " ;1P =P ;1 =Re ) f‘ | . _-~;_-- R
NE AT _ AE =
II By = Bze 3 Py = Pze HE O Rze —
At AT At AT A% A

IIT Bz = Bge 54 Bye 4 s 53 = Pze 5 4 Pye & R ;3 = Rze 54 Rye 4 -
The computation of the coefficients B,, By, Bz, By, Py, Pp, and so

forth will not be considered in detail, It should be noted that of o
all these megnitudes only four are arbitrary and are determined from

the initial conditions, whereas the remainder can be obtained from

these four megnitudes.

From a numerical analysis of these cocefficients the following
conclusions may be made:

I. Consider the group

-b - —— .
By = Blehl o .
AT _
- 1
'pl = Ple __—
s .
ry = Rpe S B

The magnitude Pl is small In comparison with B, and Rl. The
root Al is very small, BEvidently, if the airplane is stable,
)1 < 0 and the magnitudes - B (sideslip), p (angular velocity of

roll), and r (angular veloclty of yaw) decreass with time (with
increase in T = t/7).
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The root A characterizes spiral stebility of the airplane,

In order to clarify the physical significance of spiral stabllity,

the motion after a roll of the alrplane ls consldered. Let the

elrplane roll in such a manner that the right wing drops. Whereas R
in the horizontal position of the wing the - 1ift force balanced the

Pforce of gravity, the force of gravity will now give a projection

on the Y-axis and the airplane begins to sideslip (B) on the

right (lowered) wing, As & result of the sideslip, two aerodynamic

moments eppear: the moment ZﬁXB tending to rotate the wing in

the horizontal position and the moment n5XB decreasing the silde-
8lip angle B. Because of the action of the moment anB the air-

plane begins to yéw, that 1s, an angular velocity r appears, which
gives rise to two new moments: +the moment n,Xr opposing the moment

nﬁxﬁ and a moment 1.Xr, which opposes the moment Zﬁxﬂ.

2074

Thus, the characterlsiics ZB and n, act favorably in elim-
inating the disturbance and the characteristics ng and iy act
unfavorably (with respect to spiral stability).

As can be seen from equation (28) spiral stability is charac-
terized by AO, which 1s determined by the equation

B
Ag =-$;—£; (lrnﬁ T.anB)

where
C
u > 03 7? >0

1. >0; nB<0; n.< O IB>O

Hence, there will be stabllity for the case where anB in absolute
value 1s greater than l,ng whence ’

l

1@.>__I‘
ng p
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The degree of stabllity 1s characterized by the time in which the : -
Initial disturbance decreases by one-half _ —

Mt L
el =2
- 1 h N
Klt = Zn 3= 0.693
but
E:E h __--—
T L : o : ’
Ygpip = = 0693 37 - (34)

In the case of instabllity , 7\ > 0 end the time of decrease of ‘the - -

initial disturbance by one-half will be negative. In the case of

stability A <0 and b, will be positive | | : e

T =1.83 sec Kl = + 0,00825

1,83 _ : :
tspir = - 0.693 5ogg2s = - 154 sec _ T

It has been found that 2.5 minutes after the initlel Instant the
initial disturbance willl increase to twice the value. Such motion
evidently will not te observed by the pllot,

Experience shows that spiral instabllity is not felt by the
pilot if the tlime of increase of the inltial disturbance to twice
the value is large. It is to be supposed that if

ltspirl > 40 - 50 sec

at the initial flight conditions the airplane will be satisfactory
with regards to spiral stability. .

II., Consider the group

) —
Bz = Bze)\z _
- __
Py = Pze 2 o
_ NgE
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Numericel analysis shows that during a2 disturbance Ba -__a.nd RZ are
small in comparison with Py; that is, this group is found to char-

acterize a motion which differs 1little from a pure roll. It has
been shown that

1
}\.ZNTE

and because at below-stalling angles Zp < 0, P will decrease very

quickly with time because Ay is large. Generally, at the below-
stalling angles this motlon is not noticeable after 1 second.

III. Consider the group : =

A?;E Ayt
_ ME AT _
p3 = Pse + Pée
_ ME AT
r3 = Rse + R4e -

Becauge )\3 and A 4» Bz and B, are conjugate complex quantities
Az = £ + in, B3=b_3+ib4=B(cos B+is_in(§) = Be ip

Ag = b - in, B4=b3- ib4 =I_B(cosﬁ-i_einﬁ) = Be~1P

Azt At 1 i)t -1 - in)%
3363 +2B4=e4 = Be Be(£+ Tl) + Be Be(E n)

- Be ﬁ'ﬁ[e('n‘hﬁ)i L o~ (ME+B)1])

t
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But e(nt+B)l,e- (nE+B)1_ 3 cos(nt+B); and, therefore, if 2B = B

hzS Nt - E% -
Bz = Bze + Bge = Be cos(nt +B8)
-Similarly,
_ Aot A& £t L
D = Pse + P,e = Pe cos(nt+ 7)
_ Ks?.' }\4__’6.' _ -
Tz = Rge + Bye = Re cos(nt + &)

This group characterizes the oscillatory damping of the motion.

The time required. for decreasing the amplitude by one-half can.

now te found,

tt2 _1
e =3 -
— - to
Thersfors
T
typ = - 0.693 T (35)
Example: T = 1.83 E=~ 0.495
1.83

"ty = - 0.693 m-ggy = 2,56 mec

The perliod of oscillatlon is determined from the relations

(36)
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Example: T = 1.83 sec n = 2.31
1,83
T = 6,28 5= ER *.98 sec

With regard to the oscillatory stability of the airplane the
following condition must be imposed: The airplane should be stable
in oscillation and the time of decrease of the initial disturbance
by one-half (%) should be less than 1+ 1.5 times the oscillation

perlod

tz < ‘1+1.57

The stability in oscillation is affected mainly by the lateral static

gstability Bge The other coefficlents also affect the oscillation of

the airplane but toc a smaller extent., Whereas an airplane may have a
small static instabllity, it may nevertheless be dynamically stable
but the period of oscillation (T) and the time of decrease of the
initial disturbance by one-half (tp) will be large., At greater

static instability, the airplane will be unstable in oscillation;
that ls, the emplitude of osgcillation of suchk an airplane will
increase with time. For a cosfficlent of lateral static gtability
of the order ng = 0.01 and greater, the least disturbance will

terd to increase the roll of the alrplane (a kind of slow spin).
Whereas from tests in the wind tunnel of the model with locked con~
trols 1t was found that the ailrplans is neutral or even has s small
weathercock stability, in flight such an airplane will be unstable
because of the mobility of the conirol surface, For this reason,
from the requirement of ocscillatory stability it follows that the
alrplane should be statlically stable over the entire range of flight
angles of atback and especially at below-stalling angles of attack,

6, ORDER OF COMPUTATION OF DYNAMIC SEABILiTY
Computation of Airplane Northrop 2E for Dynamlc Stability

In this section, the entire dynamic-stabllity computation is
presented from sebttling up tables of the structural parameters to
cbbalning the final dynamic stabllity characteristics. At the
start of the computation, a table must be set up In which all para-
meters of the airplane required for computing the lateral dynamilc
gtability are included,
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I. G, weight of airplane, kilograms
II. Wing

l. b, wing span, meters

2. bmw’ midwing-section span, meters

3. S, wing area, square meters

4. ¢4, chord at root, meters

S. ¢, chord at tip, meters

6. V, dihedral angle - angle between plane of chords and.
plane perpendicular to plane of symmetry of airplane

- and passing through the chord at the tip, degrees )
(£ig. 15)

Te X sveptback angle - angle between lines passing through
focal line taken at one-quarter chord from leadlng edge
of wing and plane perpendlicular to axis of Fuselage
(X> 0 for forward sweepback), degrees (fig. 19)

8. 7, angle of twist of wing, degrees

ITII, Vertlcal tall surface

1. 8yp, vertical teil surface area (area of tall with part
of fuselage, (fig. 11), square meters

2. Dby, tall span (measurement shown in fig, ll), nmeters

3. 14, distance from center of gravity to hinge of ruddér,
moters

4, Angle between line of zero lift and line Jolning center

' of gravity of airplane with geometric center of verti-
cal tail surface (with part of fuselage)
Iv. Fuselage

1. Sf, area of projection of fuselage on plane of symmetry of

airplane, square meters

48
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2. 1p, length of fuselage, meters

3. h, maximum height of projection of fuselage on plans of
symmetry, meters

4. lnp, distance of center of. gravity from nose of fuselage,
’ meters

The magnitudes computed under I, II,'IIi, and iV-are always
posltive. '

The table of structural parameters for the Northrop ailrplane is:

G = 2800 kilograms Stf = 3,11 square meters
S = 33,4 square meters bt = 1.88 meters
b = 14.53 meters Zt = 5.65 meters
bpy = 3.29 meters Sp =169 square meters
¢y = 2.9 meters lp = 8,67 meters
og = 1.5 meters h = 1,45 meters
v = 7° 30 ' lp = 2.11 meters
X = 29 3¢ x = 12°
y = 1° 30

The airplane is a low-wing single-engine type

G 2 B ’ I
g = 78 ke/m -g—i-‘=o.093 f:e
c 1 S
t £
n = EE = 1,94 T = 0.389 5= 0.35
b2 ' Py
A =g = 6.34 Ag = 1.14 35 = 0.226

a 1
h=2,2F =11.8 Tn—i: = 0,244
£
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Determination of Aerodynamic Coefficients

1. The curve of varlation of the coefficlent of 1ift (Cp)

against the angle of attack (o) obtained from tests in the wind
tunnel for a model of the Northrop airplane is given in figure 2,
The angle of atback 1s meesured from the wing chord, 3Because Ct,

must be determined for angles of attack measured from the lines of
zero-11ift, table II is obtained.

2. The rotary derivatives 1y, I, Dy, and n, were determined
from the afcorementioned equations and curves and also experimentally

on & special apparatus (reference 11)
(2) Determination of ip

The derivative Zp is obtained from the datas of the table of

gtructural parameters (fig. 6). The curves experimentally obtained
and by figure € are glven in figure 30, Theoretically, the derlva-
tlve Z does not depend on the angle of attack but during a tesﬁ

a certain change in l with change in oy is vsually obtained,

The agreement obtained as shown in figure 30, is sufficiently good

and for computing the dynamic stabllity the value of IP may be
taken from figure 6 without resorting to experiment.

(v) Determination of n,

The theoretical value of Dy is found from figurs 8 by using

the given n anmd A in the table of structural parameters, The
value of np/“a taken from figure 8 must be multiplied by o

(angle of attack in deg. from the zero 1lift 1ine), The values of

np obtained from test and from figure 8 are given in figure 31.

matic numerical analysis of the dynamic stability equations shows,
hovever, that the dynamic stabllity characteristlics depend little
on the value of n.p and for this reason only an approximate value

of n; need be known, Hence, for computing the dynamic stability,
the value, which is obtained from figure 8, may be used with suffi-

cient accuracy.

(c) Determination of 1,

I% 1s obvious that a rather large dlsagreement results. A syste-
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The determination of the derivative 1. must be divided into
the followlng three stages:

(1) Determination of 1, for an untwisted wing

(2) Determination of the correction on i, dus to the twist
of the wing '

(3) Dotermination of the part of 1, due to the vertical tail
surface

1. The derivative 1, 1s cbtained from figure 10 by the glven
n and A of the wing. The value Zr/o:a taken from figure 10 must
be multiplied by a, (from the line of zero 1ift). The curve of
1, against «, for the Northrop wing-1ls presented in figure 32.

The dashed curve gives . 1, for the wing without twist.

2. As the Northrop wing is serodynamically twisted such that
the angle of attack at the tip of the wing ls greater than the
angle of attack at the tip of the midwing by 1.5°, figure 12 must
be used to determine the correction. This correction evidently
doea not depend on the angle of attack and therefore the entirs
straight 1line undergoes parsllel displacement. The correction for
twlast is

by, tuist = 0.0144

3. The correction on I, due to the vertical tall. surface is
obtained from equation (14), The required value of a; 1s deter-

mined from. figure 11. The continuous line in figure 32 shows the
derivative 1, of the Northrop airplane with account taken of the

twist of the wing and of the vertical tail surface. The_figure
also gives the poilnts obtained from experiment, It is apparent that
the agreement 1is good and that the derivative 1, may be computed

theoretically without recourse to experiment.
(d) Determination of n,

The derivative n,, 1s made up of a part due to the fuselage

with vertical tall surface and a part due to the wing., The part
n, due to the fuselage with tail is computed from equation (16a).

2074 |
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The value & 1s obtained from figure 11. The part n, due to the

wing is computed from the data pressented in flgure 15, In order to
obtain n,, the value nT/cxaz from figure 15 must be multiplied by

the square of the angle of attack. The angle of attack must te in
degrees and measured from the zero-1ift line. The sum of these two
parts gives the derivative n, of the airplane. The values of thke

derivative n, for the Northrop airplane obtained'frcm.teS£ and
from computation are shown. in figure 33, ’

It should be remembered that the derivative n, plays a great

part 1n computing lateral dynamic stabllity and. for this reason 1t
1s desirable that n, be computed as accurately as possible,

Remembering also that equation (16a) may in certain cases give =
large error, this magnitude must be experimentally determined.

(e) Static derilvatives Ya> g, g

The gtatic derivatives are determined from standard wind-tunnel

tests; therefore these magnitudes as a rule must be obtained as shown
in section 3. The values of yg obtalned by equation (22) (curvs)

and by experiment (points) are presented in figure 34. Equation (22)
generally gives a sufficiently accurate value of Jg. The values

of ZB for the Northrop alrplane obtained from test and from compu-
tation are given in figure 35, The upper dashed curve gives 15 -

for the value ¥V = 7.25° (dihedral angle). In order to take account
geometrically of the effect of the fuselage for a low wing in the
formuls, the dihedral must be decreased, as has been polinted out, by
2% 4o 56. An airplans 1s considersed the chassis of which is not
streamlined and all projlecting parts on the lower surface increase

the effective dihedral; therefore, for the computation, the V¥ angle

minus 3° is used, that is, an angle of 4,25°, The lower dashed curve
in figure 35 glves the value of ZB obtained from computation

(U e = 4.25°). The value Jl,/0¥V is obtained for the given n amd
ef B o :

A from Pigure 18.

The effect of the midwing on the derivative 1s taken Iinto B
account by the decrease in BIB/BW by an amount that may be obtalned

by use of equation (18). The center line in figure 35 gives the

value of zB with account taken of the part due to the vertical tail

surface anl the continuous line gives the value IB, if thg sweep-
back of the wing is consldered.
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The values of ng = 3C,/9B - obtained from test and by equa-

tion (21) are given in figure 36, In equation (21), the value
Ky = 0.8 1is used; the value of the coefflclent Kﬁ is cobtained

from figure 22 and a; from figure 1l.

Notwithstanding the sufficlently good agresment that was
obtained for the Northrop alrplane by computation and test for the
values 15 = Z/aﬁ and ng = oc o/ OB, these formulas must be con-

sldered only approximate and in all cases the values ZB and n13
determined from the test curves C, = £(p) and C; = £;(B).

Moments of Inertias of the Northrop Alrplane

The moments of inertia, as has been previously stated, may be
obtalned by computation., For the Northrop alrplane, the moments
of ‘Inertis sre determined by full-scale experiments according to
the method explained in the report by U. A. Pobyedonostsev (ref-
erence 13), The results of the investigation are as follows:

where the values are given in nondimensional form.

For convenience of computation, a table of all coefficlents
that enter the characteristic equation must be set up as shown in
table 3, In which for the derivatives the test values were taken
and the angle o, was computed from the line of zero-1ift,

From the data of table 3, the coefficients of the character-
1stioc equation A3, A Al, and A are computed by egquations (27).
The values of these coefficients for the Northrop airplane computed
for the angles of attack a, = 1°, 5°, 99, and 13° are given in

table 4 and the values Ay, A, &, and 1n, computed by the egua-

tions of section 4, are glven. In figures 37 and 38. A comparison
of the computed results with flight tests of reference 14 is made
in figure 39,

Complete agreemsnt was obtained for the periocd of ogcillation T,
The disagreement that exists for t, (the time of decrease of the

anplitude to 1/2) may be explained by the fact that no account was
taken in the computatlion of the effect of the propeller slipstreanm
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on the vertical tail surface. The magnitudes A; and A, in

flight have not been determined; thus it is impossible to ckheck
the accuracy of the computatlons of these values. It can be seen
from figure 39 that the computstion gives sufficiently good results,

7. APPROXIMATE FORMULAS

In this section, equations are given for estimating roots
quickly from the given asrcdynamic ccefficlents. These formulas
may also be used in computing the corrections on Ay, Ay, £, and 1q

1f after computing the lateral dynamic stability it 1s decided to
change the area of the vertlcal tail surface or the dihedral of
the wing.

For the root Ap, the equation Ay = 1,/1y can be used. The
approximate expression for Ai, which dstermines the spiral stabil-
1ty, is obtained from Aj = -Ag/A; and because '

A ~“[m (CL EE>+;CE%E]

therefore

Cy,
2 (ZBQr' Zrnﬁ)

A = -
. (o] -
t (3 to- np) + ngly

The time of decrease of the Iinitial disturbance to 1/2 is obtained
by the equation .

(37)

T

For the megnitude £ (giving the time of decrease in the ampli-
tude of oscillation t, +o 1/2) the following equation can be”

used:

&

y
‘2E - M
4 (s8)




56

It can be seen from equation (38) that the value of ¢
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increases

in absolute value with increase in magnitude of the damping of the
yaw n, and the value ¥gs which characterizes the lateral force

in sideslip., The magnitude of £ . drops in absolute value with

Increase in iC of the nondimensional radius of inertia abou

Vibrational instability will occur for £ > 0 and, as can
be seen from equation (38), vibrational instability may be obtained
for a large spiral stability if A< 0, which is usually obtained

for large values of the derivative ZB and in the absence of

Z-axls,

weathercock stability, that is, vhen n, 3> O. )
when the airplane hes small weathercock st&bllity or instabillty,

For this reason,

t the

the wings should not be given a large transverss dihedral because
the derivative ZB will then be large and this condition.wil

to,excessive spiral stability and, what is particularly important
may glve rise to oscillatory instability.

1 lead

If the area of the vertical tail surface is changed the change

in Dy,

whers

iz obtained by the equation

2
La (1) 88ur
Anr = - .Oat % ——S

8y = (BCL/Ba)t (cbtained from fig. 11)

1y dlgtance from hinge of rudder to center of gravity-m

AS¢ change In vertical tail surfece ares

in area; AS ¢ 0 for a decrease)

(A3> 0 for increass

Tre chenge in £ is obtained from the equation 4 {=an,/2iC,

The new value of . £ 1s obtained from £' = § + Af, From the
obtained value €', t, is found from equation (35).

top = - 0,693 ET : -

where T = 1.1 (G/S)/V (for an altitude of 3000 m).

newly

8

Dok
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Because Ay may be approximately determined by the equation .

1 (Cr, 1
wenl (-8) 2]

and

1 A
_P - =
1 ™ 'n ~nNb, where Db = v . :

A i,

the following equation is cbtained:

! z\ﬂ[‘%(%‘%) - ‘:‘g] | (39)

whence the pericd T 1s determlned by the equation

, where T = 1.1

T=86.28 1

Y

The greater 7 1s the smaller the period of oscillation 1s
found to be and therefore the period decreases with decrease in the
absolute value of the derivative ng, with increase in 1n, the non-

dimensional radius of inertia with respect to the Z-axls, and with
decrease in the value of ths derlvative ZB. If the expression unier

the square root sign becomes negative (as may occur in the case where
ng > 0, that is, in the absence of weathercock stabllity) the magni-

tude n does not characterize the period of oscillation but together
with the magnitude £ determines the asymptotic deviation of the

alrplane from its ccurse,

The previously derlved approximate equations glve very good
agreement with exact computation for the Northrop 2-E airplene. In
other cases, generally speaking, the agreement way be less complete
but a qualitatively correct result will be obtained13

13p% the time the present asrticle was being prepared for pub-
lication the previously derived fcormulas were checked for a large
nunber of alrplanes. In almost all cases the approximate formules
glve very good agreement with the exact formulas and they may there-

fore be used in computing the lateral dynamic stability of the '__"'"-

airplans,
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APPENDIX 1

Up to the present time investigations in the wind tunnel havs
been conducted in & system of axes different from that assumed in
this paper and for this reason equatlons are presented herein with
the aid of which the cld coefficients may be reduced to the coef-
ficlents used in this paper. .-

The sideslip angle B (previously 7o) in the diagrams of the
wind-tunnel tests has the same sign as B assumed in the report,
The moment ccoefflclents have the opposite sign. Moreoyer, up to
this time the moment coefficlents were referred to oV in order
to reduce them to nondlmensional coefficients. If the yawing
moment (in the 0ld notation cmy) is based on the distance between

the center® of grevity and the rudder hinge and the rolling moment
(Cpux) 18 based on the span,

1
t
CZ:"'Eme Cn:'Z'Tb—Cmy Cy:-ZCZ

If the results from the tunnel Investigetlons (Cix, Cmy: Cz)
are given in a gravity system of coordinates OCy./dB, acmy/BB,
and oC,/d8 are obtalned from the curves and the coefficlents 1g,
ng, and yg Bare obtained from the equations

oCy Cpyy )
IB = EE— = -2 —EE—'X57.3

¢ 13 3C.

If the results are glven in a system of chord axes, all moments
and forces are based on de, the rolling moment C'p, 1is based on

the span, and the moment of yaw C'p, 1s based on Iy (the distance
between the cenbter of gravity and the hinge of the rudder),
1y ‘ | 1y

-me = C'mx cos o + 3~ G'my sin “5,°my = C'my cos a -~ 5 c’mx sin o

cC,=C'y . g

2074
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ard finally
3¢, £

mx.
ZB=€F=-2—W57.3=

ac’l
ng =35 =~ 2

[zt

oG
T—cosa-—a-——sin

acy 31,

=FB_=" ZTB—XE'Z.S

 mx ztac
T—"ccsc,+ T T—sin

c:.:‘ 57.3

or] 57.3

a9



APPENDIX 2
o]
SECOND, THIRD AND FOURTH POWERS OF NUMBERS FROM 2.0 TO 15,0 °©
A 30 A4 A 22 ?\5 ?\4: A ?\2 7\3 7\4
2.0 8.000| 16.000| 6.6 43.56| 287.5| 1897.§|11.0{121,0{1331,0{14641.0
2.2 10.65 23.43 || 6.8 46.24| 314.4| 2138.3|11.2{125,4|1405.0]15735,2
2.4 13,82 33,18 11.4]130,0|1481,.5(|16890.0
c.5 17.58 45,70 || T.Q| 49.00| 343.0| 2401 ||11.6]|134.5|1561.0(18106,.4
2.8] 21,95 61.47 || 7.2 | 51.84| 373,2| 2687.4[11.8(139,2|1643,0|19387,8
T.4| 54,76| 405.2] 2998,7 .
3.0 27.00 81.00 || 7.6| 57,76] 439,0| 3336.2||12.0]144,0|1728,0[20738,0
3.2 32,77 | 104,86 || 7.8| 60.84| 474.5] 3701.5/{12.2|148.8]|1816,.0|22153.3
3.4 39,30 | 133,63 . 12.41153,8|1906,6|23642.1
3.6 46.66 | 168.0 8.0 64.00| 512.0| 4096 |{12.6|158,8{2000,4|25117.4
3.8 54.87 | 208.5 8.2 | 67.24| 551.4] 4521.2({12.8(|163,8[2097.0|26843,5
8.4 70,56 592.7) 4978,7
4.0 64.00 | 256.0 8.6 73,98| 638.0f 5470.1|;13.0]169,0|2197.0|28561,0
4.2 74.08 | 311.2 8.8 77.44| 681.5) 5996.9(113.2174,2|2300,0|30350.6
4.4 85.18 | 374.8 o 13.4]179.6|2406,1|32256,0
4,8 97.34 | 447.7 9.0| 81.00| 729.0| 6561 |}[13,6]|185.0|2515,5]34210,2
£,8 110.6 530.8 9,2 | 84.64| 778,7] 7163.9{[13.8|190.4|2628,0|36267.4"
9.4 88,36 830.6| 7807.5
5.0 125.0 625,0 9.6 92.16( 884.7| 8493,5|{14.0(196.0|2744,038416,0
5.2 140,86 731.2 9.8| 96,04 941.2| 9223,7|{14.2]201,.6)/2863,3 |40658,7
5.4 ] 157.5 850,.3 14,41207,4{2986,0(42998,2
5.6 175.6 985.4 {{10.0{100.0 [1000,0|10000 -||14.61213.2}3112,]1 |45437.2"
5,8 195.1 }1151.6 |{10.2'|104.0 |1061,2|10824,3|14.8{219.0|3242.0/47978.6
- 10.4 {108.1 |1125.0|11698.6
6.0 "1216.0 |12986 10.6|112.4 |1181,0[12624.8)115,0|225.0[3375.0|50625,0
6.2 238.3 |1477.6 |[10,8|116.6 [1259.7}13604.9 =
6.4 262.1 |1877.9 8
2
to
®
L N E :
| 2074 . : '
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TABLE I
A = ~7.2 A= =~T.4 AT = =7.3
nn il i nin
n| Ap B A NR A AN A A\
41 1 2687.38 2687.38 |2998.66 | 2998.66(2839.8 2839.8
31 8,27 ~373,248~-3086.76 |-405.224[~3351.2 |-389.02 |~3217.2
212,75 51.84 660,96 54,76 698.19| 53.29 679.4
1 40.809 ~-7.2 -293.82 -7.4 -301.98 -7.3 ~-297.9
0 }-0.3382 1 -0.34 1 -0.34 1 -0.34
-32.58 43,33 3.76
TABLE II -
ad, 10 50 g0 130
0, |[0.092 {0.44 | 0.74 | 1.04

2074
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TABLE IIT - COEFFICIENTS FOR COMPUTIING

NORTHROP

DYNAMIC STABILITY OF ATRPIANE
ag = 1°fay = 5% [ag = 9° o = 13°
vg | 0.53 0.53 0.48 0.45
ng |~0.038 |-0.,037 |-0.03 -0.032
lp |-0.45 -0.45 -0.42 -0.38
1, | 0.042 0.115 0.180 0.26
n, |-0.019 |-0.03¢ |[-0.05 -0.,085
n, |[-0.055 .| -0,0675 |-0,073 -0.069
1 1 -
-_— = '17.3' —_— 10.4.'
Ip " ¢
TABLE II1Ia
o =1° | oy =5° | oy = 9° | a = 13°
Cy,
5 0.046 0.22 0.37 0.52
y
EE 0.285 0.265 0.24 0.225
1
B
£ry 1.175 1,175 1,175 1,175
T
Eg -0.396 | -0.385 | -0.312 -0.333
1
£  -7.3 -7.8 -7.27 -6.57
A
ZI‘ .
ETY 0.727 1.99 3.11 4.5
;g ~0.197 -0.354 -.052 -0.678
Ny
I; -0.572 -0.702 -0,76 -0.717

B =11.8

83
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TABLE IV
Anl A A A A
og 3 2 1 0
1 8,637 |11.5 |41.04 0.209
5 8.747 |12.89 | 44,43 0.1524
9 8.27 |12.75 | 40.809 | -0.3362
13 7.51 |13.32 | 44,14 | -4.025

NACA T™M 1264
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Figure 3. - Projectlon of gravity force on axis during roll of alrplane.
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Figure 6, - Value of derivative 1, for wings of various aapeot_ ratlos and tapers.
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Figure 7., - Derivative ap.
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Figure 8, - Values of n?/ora for wings of various aspsct ratios gn_d tape_rs_. .
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Figure 9. -~ Derivative e
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Figure 10. - Values of 1Ip/ag for wings.of verlous aspect ratios and tapers.
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Pigure 11, - Value of. ag = (acl'../a"')t for various aspect ratios of vertical tail surface.
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Figure 12. - Graphs for determining correction on 1, due %o twlst of wing.
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Figure 13, - Determination of correction on "1, for twist of wing.
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Figure 16, - Derivative ZB'

T o

b

4,0

Plane of symmetry

Figure 17, - Measurement of dihedral angle of wing (deg).
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Figure 18. - Curves for determining derivative lg of wing with dihedral
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Figure 18. - Front view of wing tlp.
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Flgure 28, - Measurement of structural pafameters of éirplans.
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Figure 29, -~ Curves of 1lift force and drag against angle of attack.
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- Values of roots of characteristic equation A, and Ag (Northrop alrplane).
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Figure 38. - Values of { and 7 (Forthrop sirplane).
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